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The response of a tower}pier system with distributed mass, along the tower, to
harmonic ground excitation is studied. The system rests on viscoelastic soil, the
sti!ness and damping of which are duly taken into account. The action of the
suspension bridge cables is represented by an equivalent horizontal spring at the
top of the tower. An analytic solution for the de#ections of the tower is proposed
consisting of two parts: (a) a response of the tower obeying the non-homogeneous
boundary conditions of the problem and (b) a series of products of each of the
orthogonal eigenfunctions multiplied by a corresponding time function.
Substituting the above solution into the partial di!erential equation of motion of
the tower, and applying the Galerkin method, a system of ordinary di!erential
equations results, the solution of which furnishes the deformation of the tower.
A parametric study is performed, resulting in detailed stress distributions along the
tower, stresses at critical points, exact dynamic response of the pier, etc., as a!ected
by the involved sti!ness and damping coe$cients, loading characteristics, mass
distributions, etc. The solution presented can be considered as suitable for the
analysis of the response of heavy towers, since it can handle any tower-mass
distribution and even any tower-sti!ness distribution.

( 2000 Academic Press
1. INTRODUCTION

It is well known that in earthquake response analysis of suspension bridges the
most sensitive subsystem is the tower}pier system. Extensive research on the
earthquake resistance analysis of this system has appeared in the literature [1}4].
In these investigations, the mass of the tower was either omitted as negligible or was
considered as lumped to speci"c points along the tower. However, the tower mass
has been taken into consideration in a simpli"ed model of a fully "xed vertical
cantilever, as uniformly distributed [5]. On the other hand, in other proposed
0022-460X/00/030467#24 $35.00/0 ( 2000 Academic Press
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models, neither the rocking damping nor the in#uence of the surrounding soils to
horizontal motion were taken into account.

Due to the importance and sensitivity of the tower}pier system, it must be
studied as a structural system incorporating as many as possible elements and
subsystems which in#uence its behavior. In this sense, the aforementioned
works, despite analyzing many sides of the behavior of the tower}pier system, do
not present such a general and unique model, at least as far as the continuous
variation of properties (more or less exact) of the tower (mass, sti!ness, etc.) along
its height is concerned.

The present study aims to present a model for the tower}pier system, which at
"rst incorporates as many parameters in#uencing its behavior as possible, but
mainly is able, at the same time, to accept any continuous distribution of the tower
mass along its height, and extensively to accept any distribution of the structural
properties of the tower. In the model proposed in this work, the mass distribution
along the tower may assume any arbitrary form. The dynamic response of this
model is investigated under the action of horizontal harmonic displacement of the
supporting soil. The partial di!erential equation of the tower de#ections, including
axial e!ects and internal damping, along with the accompanying boundary
conditions, is formulated. The sti!ness and damping of the supporting soil against
rocking and horizontal motion of the pier are duly taken into account. The aim is
to express the steady state response y(x, t) of the tower in the form

y (x, t)"y
0
(x, t)#

=
+
i/1

<
i
(t)y

i
(x), (1)

where y
0
(x, t) is a steady state response satisfying the aforementioned boundary

conditions (BCs), y
i
(x) is an eigenfunction and <

i
(t) is the corresponding

generalized co-ordinate. The above eigenfunctions originate from a properly
formulated eigenvalue problem whose BCs satisfy the homogeneous part of the
BCs of the tower de#ection, and they obtain their "nal form going through an
orthogonalization process.

The proposed solution expressed by equation (1) above, satis"es the BCs of
the tower de#ection. Applying the Galerkin method, by employing the orthogonal
set of the aforementioned eigenfunctions, results in a system of linear ordinary
di!erential equations (ODEs). This system along with the equations of motion of
the pier, furnishes the corresponding time functions <

i
(t). Having determined the

displacement "eld of the tower, it is straightforward to evaluate the shear forces and
moments that are induced along the length of the tower. A parametric study is
carried out to investigate the dependence of the shear force and bending moment at
critical cross-sections along the tower on key parameters such as the frequency of
excitation, the sti!ness and damping values of the structure and of the subgrade, the
total mass of the tower, the mass distribution, etc.

The proposed method of this study is analytic, considers many parameters at the
same time, which in#uence the function of a tower}pier system (and which do not
appear in all previous work), and additionally, with a proper modi"cation (which
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was not considered purposeful to be included here) of the term y
0
(x, t), the method

can also tackle the case of variable sti!ness EI (x) along the tower.

2. THE MODEL

In Figure 1(a), the bridge tower of height h, is depicted, "xed onto the pier of total
height ¸#z

c
. The center of mass of the pier is denoted by C. The action of the

cables acting atop the tower has been replaced by the spring of sti!ness K
e
and the

vertical compressive force, P. Figure 1(b) depicts the structural model proposed and
used in the present work. In the same "gure, >

g
(t) is the horizontal ground

displacement that excites the system, K
s

and C
s

are the swaying sti!ness and
damping respectively, and Kt and Ct are the sti!ness and damping coe$cients,
respectively, for the rocking motion of the pier.

The partial di!erential equation of the lateral de#ection of the tower, considered
as a beam of sti!ness EI, distributed mass mN (x) and internal damping coe$cient
C

int
, under axial loading N(x), is [6]

EI
L4y
Lx4

#C
int

I
L5y

Lx4Lt
#

LN
Lx

Ly
Lx

#N (x)
L2y
Lx2

#mN (x)
L2y
Lt2

"0. (2)

The axial load N(x) is given by

N(x)"P#P
h

x

mN (p)g dp, (3)

hence equation (2) becomes

EI
L4y
Lx4

#C
int

I
L5y

Lx4Lt
#CP#P

h

x

mN (p)gdpD
L2y
Lx2

!mN (x) g
Ly
Lx

#mN (x)
L2y
Lt2

"0 . (4)

Regarding the associated BCs, it is pointed out "rst that at the top of the tower the
bending moment vanishes. Hence

yA(h, t)"0 (1st BC) (5)

The internal horizontal force H(x, t) that develops along the height of the tower is
given by

H(x, t)"N(x)y@(x, t)#EIyA@ (x, t). (6)

Therefore, in view of equation (6) the equilibrium of horizontal forces at the top of
the tower yields

Py@ (h, t)#EIyA@(h, t)"K
e
y (h, t) (2nd BC). (7)



Figure 1. (a) The suspension bridge tower}pier system. (b) The structural model.
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On the other hand, let

>
s
(t)">

s0
cosut (8)

be the horizontal harmonic motion of the foundation interface, which is attached to
the pier base. Now the displacemnt y (0, t) of the base of the tower (x"0), must
satisfy the relation

y (0, t)!(¸#z
c
)y@(0, t)">

s0
cosut (3rd BC) (9)

Finally, Figure 2(a) displays a free-body diagram of the pier with all the actions that
are applied on it. Moment equilibrium of the pier with respect to the base center A,
is expressed as

R (M
i
)
A
"Kty@ (0, t)#CtyR @ (0, t)#I

p
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p
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c
)y @ (0, t)!(¸#z

c
)H(0, t)"0 (10)
Figure 2. (a) Pier dynamic equilibrium. (b) Actions on both sides of the foundation interface.
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where

y
c
(t)">

s0
cosut#z

c
y@ (0, t) (11)

is the displacement of the pier mass center C, and

m
t
"P

h

0

mN (x)dx (12)

is the total mass of the tower.
Using equations (6), (11) and (12), equation (10) takes the form

y @(0, t) (Kt!m
p
gz

c
)!EIyA(0, t)#EIy @A(0, t) (¸#z

c
)#yR @(0, t)Ct

#yK @(0, t) (I
p
#m

p
z2
c
)"m

p
z
c
u2>

s0
cosut (4th BC). (13)

The dynamic response of the tower is governed by equation (4) subject to the BCs
expressed by equations (5), (7), (9) and (13).

The excitation is applied to the tower}pier system through the pier base. The
horizontal force equilibrium of the pier (see Figure 2(a)) is expressed as

H (0, t)!m
p
[>G

s
(t)#z

c
yK @(0, t)]#F (t)"0,

which in view of equations (6) and (8) becomes

F(t)!(p#m
t
g)y@ (0, t)!EIy@A (0, t)!m

p
z
c
yK @ (0, t)#m

p
>

s0
u2cosut"0. (14)

On the other hand, Figure 2(b) represents the actions on both sides of the
foundation interface, the equilibrium of which yields

F (t)"K
s
>

g
(t)!K

s
>

s
(t)!C

s
>Q

g
(t)!C

s
>Q

s
(t).

Employing equation (8) and

>
g
(t)">

g0
cos (ut#u) (15)

for the horizontal harmonic motion of the surrounding soils, the above expression
for F(t) becomes

F(t)"K
s
>

g0
cos (ut#u)!K

s
>

s0
cosut!C

s
>
g0

u sin (ut#u)#C
s
>

s0
u sinut

which may be written in the matrix form as follows:

F (t)"!>
s0

[K
s
!C

s
u] C

cosut
sinutD#>g0

[K
s
!C

s
w] C

cosu,
sinu,
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cosu D C

cosut
sinutD .

(16)
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In equation (15), u is the phase angle at which the harmonic motion of the
surrounding soils precedes the harmonic motion of the foundation interface.

3. THE TERM y
0
(x, t)

As has already been pointed out in the Introduction, the term y
0
(x, t) of the

solution given by equation (1) takes care of the non-homogeneous boundary
conditions. In order to express y

0
(x, t) consider the following ordinary di!erential

equation:

EIyIV
0

(x, t)#PyA
0
(x, t)"0, (17)

with solution

y
0
(x, t)"c

1
(t) cosA

a
1
x

h B#c
2
(t) sinA

a
1
x

h B#c
3
(t)

x
h
#c

4
(t), 0)x)h, (18)

where

a
1
"A

Ph2

EI B
1@2

(19)

subject to the BCs given in equations (5), (7), (9) and (13) which are rewritten below
in terms of y

0
(x, t):

yA
0
(h, t)"0, (20)
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z
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If one substitutes the solution given by equation (18) into the BCs expressed by
equations (20)}(23) the following equations result:

c
1
(t) cosa

1
#c

2
(t) sina

1
"0, (24a)

c
1
(t)K

e
cosa

1
#c

2
(t)K

e
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1
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3
(t) AKe

!

P
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4
(t)K

e
"0, (24b)
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The "rst three of these i.e. equations (24a)}(24c), constitute a linear algebraic system
of three equations with three unknowns (c

1
(t), c

2
(t), c

3
(t)). Solving for them, one

obtains

c
i
(t)"k

i1
c
4
(t)#k

i2
>

s0
cosut, i"1, 2, 3, (25)

where k
i1

and k
i2

are known expressions of the coe$cients in equation (24).
Substituting equation (25) into equation (24d), one obtains an ODE of the form

p
2
cK
4
(t)#p

1
cR
4
(t)#p

0
c
4
(t)">

s0
(q

1
cosut#q

2
sinut), (26)

where p
i
's and q

i
's are known constants.

In the presence of damping, the complementary solution of equation (26)
(transient response) vanishes eventually. Hence, only the steady state response
of the model in Figure 1(b) is considered, and only the particular solution of
equation (26) of the form

c
4
(t)">

s0
(h

41
cosut#h

42
sinut) (27)

will be taken into account. To evaluate the constants h
41

, h
42

, substitute equation
(27) into equation (26) and set the coe$cients of cosut and sinut equal to zero.

Now that c
4
(t) is known, substitute equation (27) into equation (25) and express

the time functions c
i
(t), i"1, 2,2 , 4, in the form

c
i
(t)">

s0
(h

41
cosut#h

i2
sinut), i"1, 2, 3, 4. (28)

Introducing equation (28) into equation (18), the function y
0
(x, t) takes the form

y
0
(x, t)">

s0
[h

1
(x) cosut#h

2
(x) sinut], (29)

where h
1
(x) and h

2
(x) are known functions.
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4. THE EIGENFUNCTIONS y
i
(x)

According to the Galerkin method the eigenfunctions y
i
(x), i"1, 2,2 ,

appearing in the series on the right-hand side of the proposed solution, equation (1),
must form an orthogonal and complete set. For the purpose of the present work the
requirement for completeness will not be considered strictly.

To construct the y
i
(x)s, consider "rst the ODE

EIyN V
i
(x)#(P#m*

t
g)yN A@

i
(x)"0, 0)x)h, (30)

which has a solution of the form

yN
i
(x)"c

1
cosA
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2
x

h B#c
2
sinA
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2
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h B#c
3 A

x
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2
#c

4

x
h
#c

5
, (31)

where

a*
2
"C

(P#m*
t
g)h2

EI D
1@2

. (32)

Furthermore, consider the following homogeneous boundary conditions to be
satis"ed by the above solution, equation (31):

yN
i
(0)"0, (33a)

yN @
i
(0)"0, (33b)

yN A
i
(0)!(¸#z

c
)yN @@@

i
(0)"0, (33c)

yN A
i
(h)"0, (33d)

PyN @
i
(h)#EIyN @@@

i
(h)"K

e
yN
i
(h). (33e)

The ODE, equation (30), along with the BCs, equations (33), constitutes a boundary
value problem, the eigenvalues and eigenfunctions of which will be determined. If
one substitutes the solution, equation (31), into the above BCs, the following linear
homogeneous algebraic system of "ve equations with "ve unknowns (c

1
, c

2
, c

3
, c

4
and c

5
) results, namely,

c
1
#c

5
"0, (34a)

c
2
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2
#c

4
"0, (34b)
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The existence of non-trivial solution is equivalent to the vanishing of the (5]5)
determinant D

5
of the coe$cients c

i
, i"1, 2,2 , 5; D

5
is a function of the

parameter a*
2
, or according to equation (32) a function of the parameter m*

t
, which

must not be confused with m
t
of equation (12). The condition

D
5
(m*

t
)"0 (35)

is a transcendental equation which furnishes the eigenvalues m*
ti
, i"1, 2, 3,2 , of

the problem under consideration.
To each of the above eigenvalues m*

ti
corresponds an eigenfunction yN

i
(x) given by

equation (31). In Figure 3(a) one can see the "rst four eigenfunctions yN
i
(x),

i"1, 2, 3, 4, along with the corresponding eigenvalues m*
ti
. The constructed set of

eigenfunctions yN
i
(x), i"1, 2, 3,2 , in general is not orthogonal, as the Galerkin

method would require. To obtain an orthogonal (orthonormal) set, the
Gram}Schmit orthogonalization process [7] is applied according to which
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F

So, the set y
i
(x), i"1, 2, 3,2 , of orthogonal eigenfunctions results.



Figure 3. (a) Non-orthogonal tower eigenfunctions. (b) Orthogonal tower eigenfunctions.
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The "rst four y
i
(x)s along with the corresponding eigenvalues are shown in

Figure 3(b).
The similarity of the eigenfunctions of Figure 3 (b) with the mode shapes of the

displacements evaluated in reference [5], is obvious.
According to the above formulae, each eigenfunction y

i
(x) is a linear

combination of the eigenfunctions yN
i
(x). Therefore, since yN

i
(x)s satisfy the BCs

equations (33), it is evident that the eigenfunctions y
i
(x) also do so.

5. THE GALERKIN METHOD

According to the Galerkin method, one has to demonstrate that the proposed
solution, expressed by equation (1), satis"es the four BCs of the model of Figure
1(b) expressed by equations (5), (7), (9) and (13).

Taking the second derivative w.r.t. x of y (x, t) as expressed by equation (1),
one observes that equation (5) (1st BC) is satis"ed in view of equations (20)
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and (33d), i.e.,

yA (h, t)"yA
0
(h, t)#+

i

<
i
(t)yA

i
(h)"0.

Substituting now equation (1) into equation (7) (2nd BC) one obtains
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i

<
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i
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i
(h)!K

e
y
i
(h)]"0,

which is satis"ed in view of equations (21) and (33e).
Substitution of equation (1) into equation (9) (3rd BC) furnishes

y
0
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i

<
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0
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c
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which in view of equations (33a, b) and equation (22) is satis"ed.
Finally, substituting equation (1) into equation (13) (4th BC) one obtains

+
i

[<
i
(t) (Kt!m

p
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p
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p
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p
z
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which is satis"ed if one takes into account equations (33b, c) and (23).
Thus, it has been demonstrated that the proposed solution, equation (1), satis"es

the four BCs of the problem under consideration.
In addition, the proposed solution must satisfy equation (4), within the domain

0)x)h. Substituting equation (1) into equation (4), in general, a residual R (x, t)
arises which must vanish. Vanishing of R (x, t) is equivalent to the vanishing of the
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following inner products:

P
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0

R(x, t)y
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(x)dx"0, i"1, 2,2 , (36)

since the set y
i
(x) is orthogonal.

Carrying out the operations involved in the "rst n of equations (36), one obtains
a system of n ODEs, with respect to the time functions <
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int

Iy IV
j

(x)y
i
(x)dx, i, j"1, 2,2 , n,

b
ij
"P

h

0
GEIyIV

i
(x)#CP#P

h

x

mN (p)gdpDyA
j
(x)!mN (x)gy@

j
(x)Hy

i
(x) dx,

i, j"1, 2,2 , n,

c
i
"!P

h

0
GEIh IV

1
(x)#C

int
IuhIV

2
(x)#CP#P

h

x

mN (p)gdpDhA
1
(x)!mN (x)gh@

1
(x)

!mN (x)u2h
1Hy

i
(x)dx, i"1, 2,2 , n,

d
i
"!P

h

0
GEIh IV

2
(x)!C

int
IuhIV

1
(x)#CP#P

h

x

mN (p)gdpDhA
2
(x)!mN (x)gh@

2
(x)

!mN (x)u2h
2Hy

i
(x)dx, i"1, 2,2 , n.
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In the presence of damping, the transient response (complementary solution) of
equation (37) eventually vanishes. In other words, a particular solution of equation
(37) of the form

C
<

1
(t)

.

<
n
(t) D">s0 C

m
1
,

.

m
n
,

n
1
.

n
n
D Ccosut

sin utD (38)

is of interest, where u is the frequency of the ground excitation appearing in
equations (8) and (15). Substituting equation (38) into equation (37), a linear
algebraic system of the form

C
(b

11
!u2a

11
) . b

1n
!u2a

1n
, up

11
. up

1n
. . . . . .

b
n1
!u2a

n1
. (b

nn
!u2a

nn
), up

n1
. up

nn
!up

11
. !up

1n
, (b

11
!u2a

11
) . b

1n
!u2a

1n
. . . . . .

!up
n1

. !up
nn

, b
n1
!u2a

n1
, . (b

nn
!u2a

nn
)
D C

m
1
.

m
n

n
1
.
n
n

D"C
c
1
.
c
n

d
1
.
d
n

D
(39)

results, which solved for m
i
and n

i
, i"1, 2,2 , provides the time functions<

i
(t), as

given by equation (38).
In view of equations (29) and (38) and the eigenfunctions y

i
(x) having been

determined, the proposed solution, equation (1), is fully described, assuming the
following form:

y (x, t)">
s0GCh1 (x)#+

i

m
i
y
i
(x)D cosut#Ch2 (x)#+

i

n
i
y
i
(x)D sinutH . (40)

Having obtained an expression for the response of the tower, it is now necessary to
introduce the support motion, equation (15), which is the source of the excitation.
Substituting equation (40) into equation (14) and performing the operations, an
expression of the form

F (t)">
s0

[A, B] C
cosut
sin utD (41)

results, where A and B are known quantities comprising h
1
(x), h

2
(x), y

i
(x),

i"1, 2,2 and their derivatives. Comparing equations (16) and (41) one obtains

>
s0

[A#K
s
,B!C

s
u] C

cosut
sinutD">g0

[K
s
!C

s
u] C

cosu,
sinu,

!sinu
sinuD C

cosut
sinutD .
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Setting coe$cients of cosut and sinut equal to zero, the following system results:

>
s0

(A#K
s
)">

g0
(K

s
cosu!C

s
u sinu),

>
s0

(B!C
s
u)">

g0
(!K

s
sinu!C

s
u cosu),

which solved for u and >
s0

, furnishes

u"arctanA
AC

s
u#BK

s
BC

s
u!K2

s
!C2

s
u2!AK

s
B (42a)

and

>
s0
">

g0

K
s
cosu!C

s
u sinu

(A#K
s
)

. (42b)

Now, given the excitation equation (15) and in view of equations (42), the response
of the base of the system, equation (8), is directly determined.

To complete the analysis of the tower dynamic response, the shear force Q(x, t)
and the bending moment M(x, t) along the tower have to be determined.
Substituting equation (40) into the well-known expressions

Q (x, t)"!EIy @@@ (x, t),

M (x, t)"EIyA (x, t),

one obtains

Q (x, t)"Q
1
(x) cosut#Q

2
(x) sinut

and

M (x, t)"M
1
(x) cosut#M

2
(x) sinut

in which

Q
1
(x)"!EI>

s0Ch@A
1
(x)#+

i

m
i
y@A
i
(x)D , (43a)

Q
2
(x)"!EI>

s0 Ch@@@
2

(x)#+
i

n
i
y@@@
i

(x)D , (43b)

M
1
(x)"EI>

s0ChA
1
(x)#+

i

m
i
yA
i
(x)D , (44a)

M
2
(x)"EI>

s0 ChA
2
(x)#+

i

n
i
yA
i
(x)D , (44b)
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The amplitudes of the developed bending moments and shear forces along the
tower are obviously given by

Q
a
(x)"[Q2

1
(x)#Q2

2
(x)]1@2 , (45a)

M
a
(x)"[M2

1
(x)#M2

2
(x)]1@2 . (45b)

6. PARAMETRIC STUDY*RESULTS

To carry out a parametric study in a general form, one has to render
non-dimensional quantities appearing in the analysis. Using the tower height h, the
ground motion amplitude >

g0
, and the tower sti!ness EI as normalizing

parameters, one obtains the following non-dimensional quantities:

tower abscissa m"x/h
time q"t (g/h)1@2
ground motion frequency w"u (h/g)1@2
tower de#ection n(m, q)"y (x, t)/>

g0
top tower force a

1
"(Ph2/EI)1@2

tower mass a
t
"(m

t
gh2/EI)1@2

pier mass k
p
"(m

p
gh2/EI)1@2

pier moment of inertia i
p
"I

p
/m

p
z2
c

top tower spring i
e
"K

e
h3/EI

soil sti!ness against rocking it"Kth/EI
soil damping against rocking ct"(Cth/EI) (g/h)1@2
soil sti!ness against horizontal motion i

s
"K

s
h3/EI

soil damping against horizontal motion c
s
"(C

s
h3/EI ) (g/h)1@2

coe$cient of internal damping c
int
"(C

int
/E) (g/h)1@2

bending moment along the tower M (m, q)"M (x, t)h2/EI>
g0
"nA (m, q)

shear force along the tower Q (m, q)"Q (x, t)h3/EI>
g0
"n @A (m, q)

Equations (40) and (42), which express the response of the tower and the pier
respectively, are "rst transformed to non-dimensional form. Then a suspension
bridge is considered which is similar to that studied in reference [4], the geometric,
mass and elastic data of which, are:

tower height h"176m
pier height (above C) ¸"49 m
pier height (below C) z

c
"16 m

force at the top of the tower p"400 000 kN
sti!ness of the tower EI"50]108kNm2
sti!ness of the tower top spring K

e
"700 000 kN/m

mass of the pier m
p
"335 000000 kg

moment of inertia of the pier I
p
"1)9]1011kg m2

sti!ness for the horizontal motion of the pier K
s
"4}12]106kN/m
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damping for the horizontal motion of the pier C
s
"4}10]106kN s/m

sti!ness for the rocking motion of the pier Kt"30}80]109kN m
damping for the rocking motion of the pier Ct"12}30]109kNms
ground motion frequency u"1}25 rad/s

Additionally it is considered that

mass of the tower m
t
"0)10}0)30m

internal damping of the tower C
int
"2}5]106kN s/m2

Transforming, now, the above data to non-dimensional quantities, as de"ned
before, the following numerical values result:

top tower force a
1
"1)6

top tower spring sti!ness i
e
"770

pier mass k
p
"4)5

tower mass a
t
"0)15}0)50

pier moment of inertia i
p
"2)22

soil sti!ness against horizontal motion i
s
"5000}15 000

soil damping against horizontal motion c
s
"1000}3000

soil sti!ness against rocking it"1000}3000
soil damping against rocking ct"100}300
ground motion frequency w"5}100
internal damping of the tower c

int
"0)02}0)05

The parametric study furnishes the following results.
In Figure 4(a) and (b) the variations of the bending moment amplitude M

a
(m)

(equation (45a)) and the shear force amplitude Q
a
(m) (equation (45b)), respectively,

are shown along the tower for di!erent values of the ground motion frequency
w and for certain values of the other parameters: kt , ct , k

s
, c

s
, a

t
and c

int
, assuming

a uniform distribution of the tower mass a
t
along the tower. Similarly, in Figure 5(a)

and (b) the variations of M
a
(m) and Q

a
(m) are depicted for triangular distribution of

the tower mass a
t

along the tower. As expected, the triangular distribution
compared with the uniform distribution, causes greater stresses M

a
and Q

a
in the

neighborhood of the base of the tower (small x/h).
Furthermore, comparing Figures 4 and 5 with the variations of shear and

bending moment along the towers studied in reference [5], one can verify an
impressive similarity in their form.

In Figure 6(a) and (b) the variations of the maximum value M
a,max

of the bending
moment amplitude and the maximum value Q

a,max
of the shear force amplitude,

respectively, along the tower are shown versus the ground motion frequency w, for
uniform distribution of the tower mass and for a range of values of the soil rocking
sti!ness Kt .

In Figure 7(a) and (b) the maximum bending moment amplitude M
a,max

and the
maximum shear force amplitude Q

a,max
, respectively, are depicted versus w for



Figure 4. (a) Variation of M
a
(m) along the tower for uniform distribution of the tower mass.

(b) Variation of Q
a
(m) along the tower for uniform distribution of the tower mass.
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a range of values of the soil rocking damping ct , and for uniform distribution of the
tower mass.

Similarly Figure 8(a) and (b) depict the variations of M
a,max

and Q
a,max

versus w,
for several values of the soil sti!ness to horizontal motion, k

s
, and for uniform

distribution of the tower mass. While, in Figure 9(a) and (b) one can see M
a,max

and
Q

a,max
, respectively, versus w for di!erent values of the soil damping to horizontal

motion, c
s
, and uniform distribution of a

t
.

From Figures 6}9 one obtains the results that the peak stresses developed in the
tower increase with the soil sti!ness and soil damping coe$cients of the horizontal
as well as the rocking ground motion.

Figure 10(a) and (b) show M
a,max

and Q
a,max

versus w for di!erent values of the
tower mass a

t
distributed uniformly along the tower. As expected, the maximum

stresses developed in the tower are increasing functions of the tower mass a
t
.

Finally, Figure 11(a) and (b) present M
a,max

and Q
a,max

versus w, for several
values of the internal damping coe$cient c

int
and for uniformly distributed tower

mass a
t
. It is shown here that the stresses in the tower decreases as the internal

damping of the material of the tower increases.



Figure 5. (a) Variation of M
a
(m) along the tower for triangular distribution of the tower mass.

(b) Variation of Q
a
(m) along the tower for triangular distribution of the tower mass.

Figure 6. (a) Variation of M
a,max

with kt . (b) Variation of Q
a,max

with kt .
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Figure 7. (a) Variation of M
a,max

with ct . (b) Variation of Q
a,max

with ct .

Figure 8. (a) Variation of M
a,max

with k
s
. (b) Variation of Q

a,max
with k

s
.
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The tendency of the curves in Figures 4}11 indicates the existence of resonance at
a range of the non-dimensional frequency w"30}40, which corresponds to
a ground motion frequency u"7}9 rad/s.



Figure 9. (a) Variation of M
a,max

with c
s
. (b) Variation of Q

a,max
with c

s
.

Figure 10. (a) Variation of M
a,max

with a
t
. (b) Variation of Q

a,max
with a

t
.
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7. CONCLUSIONS

This work presents an analytic solution of problems in dynamics of suspension
bridge tower}pier systems, based on the Galerkin method.



Figure 11. (a) Variation of M
a,max

with c
int

. (b) Variation of Q
a,max

with c
int

.
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The most important features of this investigation, are the following:

1. This method can handle any form of mass distribution along the tower. From
this point of view, the proposed method is very useful in the cases where the
mass of the tower is not small, compared with the pier mass.

2. The presented method is also exact and detailed since it gives analytically the
stresses and de#ections at all the points along the tower, considered as
a #exible and heavy rod. At the same time the method gives the full dynamics
of the pier, having taken into account the sti!ness and damping of the
supporting soil.

3. The main results of the parametric study are:

(a) A triangular type distribution develops greater stresses in the tower than
a uniform type.

(b) The stresses in the tower increase with the sti!ness and the damping of the
rocking and the horizontal ground excitation, as well as with the mass of
the tower. On the contrary, the stresses in the tower decrease with the
internal damping of its material.

4. A further extension of the presented model can also include the case
of variable sti!ness EI(x) along the tower, by properly modifying the
formulation of the term y

0
(x, t) in equation (1).

5. Furthermore, one can see that, in general, under suitable adjustments, the
presented analytic method can be applied to the dynamic analysis of any
structural or mechanical system, consisting of rigid bodies connected by
#exible rods with considerable mass.
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APPENDIX A

NOTATION
a
1

parameter in the expression of the term y
0
(x, t)

a
t

dimensionless mass of the tower
a*
2

parameter for the evaluation of the eigenfunctions
a
ij

coe$cients of the ODE system of the Galerkin method
A, B coe$cients for the foundation shear force
b
ij

coe$cients of the ODE system of the Galerkin method
c
i

coe$cients of the ODE system of the Galerkin method
C

int
internal damping coe$cient of the tower

c
i
(i"1,2 , 5) coe$cients for the evaluation of the eigenfunctions

c
i
(t)

1
(i"1,2 , 8) coe$cients for the term y

0
(x, t)

C
s
, c

s
damping coe$cient for the horizontal motion of the surrounding
soil

Ct , ct damping coe$cient for the rocking motion of the pier
d
i

coe$cients of the ODE system of the Galerkin method
D

5
(m*

t
) determinant for the evaluation of the eigenfunctions

E modulus of elasticity of the tower
F (t) shear force at the foundation interface
g acceleration due to gravity
h height of the tower
h
i1

, h
i2

(i"1,2 , 4) coe$cients for the term y
0
(x, t)

H(x, t) internal horizontal force of the tower
I moment of inertia of the tower
I
p
, i

p
moment of inertia of the pier

k
i1

, k
i2

, (i"1,2 , 3) coe$cients for the term y
0
(x, t)

K
e
, k

e
sti!ness coe$cient of the tower top spring

K
s
, k

s
sti!ness coe$cient for the horizontal motion of the surrounding
soil

Kt , kt sti!ness coe$cient of the rocking motion of the pier
¸ height of the pier (upper)
m

p
mass of the pier
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m
t

mass of the tower
mN (x) mass distribution of the tower
m*

ti
, (i"1, 2,2) eigenvalues corresponding to the eigenfunctions

m
i

coe$cients of the time functions
M (x, t), M (m, q) bending moment along the tower
M

1
(x), M

2
(x) coe$cients of the bending moment

M
a
(x), M

a
(m) amplitude of the bending moment along the tower

n
i

coe$cients of the time functions
n(m, q) dimensionless de#ections of the tower
N(x) axial force along the tower
P vertical force at the top of the tower
p
0
, p

1
, p

2
, q

1
, q

2
coe$cients of the ODE of the term y

0
(x, t)

p
ij

coe$cients of the ODE system of the Galerkin method
Q(x, t), Q(m, q) shear force along the tower
Q

1
(x), Q

2
(x) coe$cients of the shear force

Q
a
(x), Q

a
(m) amplitude of the shear force along the tower

R (x, t) residual of the Galerkin method
t time
<

i
(t) time functions in the proposed solution

w dimensionless frequency
x abscissa along the tower
y (x, t) de#ection of the tower
y
0
(x, t) tower de#ection obeying the non-homogeneous BCs

y
i
(x), yN

i
(x) non-orthogonal and orthogonal eigenshapes

>
g
(t), >

g0
displacement of the surrounding soil

>
s
(t), >

s0
displacement of the foundation interface

z
c

height of the pier (lower)
h
1
(x), h

2
(x) coe$cients for the expression of the term y

0
(x, t)

k
p

dimensionless mass of the pier
m dimensionless abscissa along the tower
q dimensionless time
u frequency
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